Copied to
clipboard

G = C22×C52order 208 = 24·13

Abelian group of type [2,2,52]

direct product, abelian, monomial, 2-elementary

Aliases: C22×C52, SmallGroup(208,45)

Series: Derived Chief Lower central Upper central

C1 — C22×C52
C1C2C26C52C2×C52 — C22×C52
C1 — C22×C52
C1 — C22×C52

Generators and relations for C22×C52
 G = < a,b,c | a2=b2=c52=1, ab=ba, ac=ca, bc=cb >

Subgroups: 54, all normal (8 characteristic)
C1, C2, C2, C4, C22, C2×C4, C23, C13, C22×C4, C26, C26, C52, C2×C26, C2×C52, C22×C26, C22×C52
Quotients: C1, C2, C4, C22, C2×C4, C23, C13, C22×C4, C26, C52, C2×C26, C2×C52, C22×C26, C22×C52

Smallest permutation representation of C22×C52
Regular action on 208 points
Generators in S208
(1 187)(2 188)(3 189)(4 190)(5 191)(6 192)(7 193)(8 194)(9 195)(10 196)(11 197)(12 198)(13 199)(14 200)(15 201)(16 202)(17 203)(18 204)(19 205)(20 206)(21 207)(22 208)(23 157)(24 158)(25 159)(26 160)(27 161)(28 162)(29 163)(30 164)(31 165)(32 166)(33 167)(34 168)(35 169)(36 170)(37 171)(38 172)(39 173)(40 174)(41 175)(42 176)(43 177)(44 178)(45 179)(46 180)(47 181)(48 182)(49 183)(50 184)(51 185)(52 186)(53 108)(54 109)(55 110)(56 111)(57 112)(58 113)(59 114)(60 115)(61 116)(62 117)(63 118)(64 119)(65 120)(66 121)(67 122)(68 123)(69 124)(70 125)(71 126)(72 127)(73 128)(74 129)(75 130)(76 131)(77 132)(78 133)(79 134)(80 135)(81 136)(82 137)(83 138)(84 139)(85 140)(86 141)(87 142)(88 143)(89 144)(90 145)(91 146)(92 147)(93 148)(94 149)(95 150)(96 151)(97 152)(98 153)(99 154)(100 155)(101 156)(102 105)(103 106)(104 107)
(1 63)(2 64)(3 65)(4 66)(5 67)(6 68)(7 69)(8 70)(9 71)(10 72)(11 73)(12 74)(13 75)(14 76)(15 77)(16 78)(17 79)(18 80)(19 81)(20 82)(21 83)(22 84)(23 85)(24 86)(25 87)(26 88)(27 89)(28 90)(29 91)(30 92)(31 93)(32 94)(33 95)(34 96)(35 97)(36 98)(37 99)(38 100)(39 101)(40 102)(41 103)(42 104)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(51 61)(52 62)(105 174)(106 175)(107 176)(108 177)(109 178)(110 179)(111 180)(112 181)(113 182)(114 183)(115 184)(116 185)(117 186)(118 187)(119 188)(120 189)(121 190)(122 191)(123 192)(124 193)(125 194)(126 195)(127 196)(128 197)(129 198)(130 199)(131 200)(132 201)(133 202)(134 203)(135 204)(136 205)(137 206)(138 207)(139 208)(140 157)(141 158)(142 159)(143 160)(144 161)(145 162)(146 163)(147 164)(148 165)(149 166)(150 167)(151 168)(152 169)(153 170)(154 171)(155 172)(156 173)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208)

G:=sub<Sym(208)| (1,187)(2,188)(3,189)(4,190)(5,191)(6,192)(7,193)(8,194)(9,195)(10,196)(11,197)(12,198)(13,199)(14,200)(15,201)(16,202)(17,203)(18,204)(19,205)(20,206)(21,207)(22,208)(23,157)(24,158)(25,159)(26,160)(27,161)(28,162)(29,163)(30,164)(31,165)(32,166)(33,167)(34,168)(35,169)(36,170)(37,171)(38,172)(39,173)(40,174)(41,175)(42,176)(43,177)(44,178)(45,179)(46,180)(47,181)(48,182)(49,183)(50,184)(51,185)(52,186)(53,108)(54,109)(55,110)(56,111)(57,112)(58,113)(59,114)(60,115)(61,116)(62,117)(63,118)(64,119)(65,120)(66,121)(67,122)(68,123)(69,124)(70,125)(71,126)(72,127)(73,128)(74,129)(75,130)(76,131)(77,132)(78,133)(79,134)(80,135)(81,136)(82,137)(83,138)(84,139)(85,140)(86,141)(87,142)(88,143)(89,144)(90,145)(91,146)(92,147)(93,148)(94,149)(95,150)(96,151)(97,152)(98,153)(99,154)(100,155)(101,156)(102,105)(103,106)(104,107), (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,71)(10,72)(11,73)(12,74)(13,75)(14,76)(15,77)(16,78)(17,79)(18,80)(19,81)(20,82)(21,83)(22,84)(23,85)(24,86)(25,87)(26,88)(27,89)(28,90)(29,91)(30,92)(31,93)(32,94)(33,95)(34,96)(35,97)(36,98)(37,99)(38,100)(39,101)(40,102)(41,103)(42,104)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(51,61)(52,62)(105,174)(106,175)(107,176)(108,177)(109,178)(110,179)(111,180)(112,181)(113,182)(114,183)(115,184)(116,185)(117,186)(118,187)(119,188)(120,189)(121,190)(122,191)(123,192)(124,193)(125,194)(126,195)(127,196)(128,197)(129,198)(130,199)(131,200)(132,201)(133,202)(134,203)(135,204)(136,205)(137,206)(138,207)(139,208)(140,157)(141,158)(142,159)(143,160)(144,161)(145,162)(146,163)(147,164)(148,165)(149,166)(150,167)(151,168)(152,169)(153,170)(154,171)(155,172)(156,173), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208)>;

G:=Group( (1,187)(2,188)(3,189)(4,190)(5,191)(6,192)(7,193)(8,194)(9,195)(10,196)(11,197)(12,198)(13,199)(14,200)(15,201)(16,202)(17,203)(18,204)(19,205)(20,206)(21,207)(22,208)(23,157)(24,158)(25,159)(26,160)(27,161)(28,162)(29,163)(30,164)(31,165)(32,166)(33,167)(34,168)(35,169)(36,170)(37,171)(38,172)(39,173)(40,174)(41,175)(42,176)(43,177)(44,178)(45,179)(46,180)(47,181)(48,182)(49,183)(50,184)(51,185)(52,186)(53,108)(54,109)(55,110)(56,111)(57,112)(58,113)(59,114)(60,115)(61,116)(62,117)(63,118)(64,119)(65,120)(66,121)(67,122)(68,123)(69,124)(70,125)(71,126)(72,127)(73,128)(74,129)(75,130)(76,131)(77,132)(78,133)(79,134)(80,135)(81,136)(82,137)(83,138)(84,139)(85,140)(86,141)(87,142)(88,143)(89,144)(90,145)(91,146)(92,147)(93,148)(94,149)(95,150)(96,151)(97,152)(98,153)(99,154)(100,155)(101,156)(102,105)(103,106)(104,107), (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,71)(10,72)(11,73)(12,74)(13,75)(14,76)(15,77)(16,78)(17,79)(18,80)(19,81)(20,82)(21,83)(22,84)(23,85)(24,86)(25,87)(26,88)(27,89)(28,90)(29,91)(30,92)(31,93)(32,94)(33,95)(34,96)(35,97)(36,98)(37,99)(38,100)(39,101)(40,102)(41,103)(42,104)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(51,61)(52,62)(105,174)(106,175)(107,176)(108,177)(109,178)(110,179)(111,180)(112,181)(113,182)(114,183)(115,184)(116,185)(117,186)(118,187)(119,188)(120,189)(121,190)(122,191)(123,192)(124,193)(125,194)(126,195)(127,196)(128,197)(129,198)(130,199)(131,200)(132,201)(133,202)(134,203)(135,204)(136,205)(137,206)(138,207)(139,208)(140,157)(141,158)(142,159)(143,160)(144,161)(145,162)(146,163)(147,164)(148,165)(149,166)(150,167)(151,168)(152,169)(153,170)(154,171)(155,172)(156,173), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208) );

G=PermutationGroup([[(1,187),(2,188),(3,189),(4,190),(5,191),(6,192),(7,193),(8,194),(9,195),(10,196),(11,197),(12,198),(13,199),(14,200),(15,201),(16,202),(17,203),(18,204),(19,205),(20,206),(21,207),(22,208),(23,157),(24,158),(25,159),(26,160),(27,161),(28,162),(29,163),(30,164),(31,165),(32,166),(33,167),(34,168),(35,169),(36,170),(37,171),(38,172),(39,173),(40,174),(41,175),(42,176),(43,177),(44,178),(45,179),(46,180),(47,181),(48,182),(49,183),(50,184),(51,185),(52,186),(53,108),(54,109),(55,110),(56,111),(57,112),(58,113),(59,114),(60,115),(61,116),(62,117),(63,118),(64,119),(65,120),(66,121),(67,122),(68,123),(69,124),(70,125),(71,126),(72,127),(73,128),(74,129),(75,130),(76,131),(77,132),(78,133),(79,134),(80,135),(81,136),(82,137),(83,138),(84,139),(85,140),(86,141),(87,142),(88,143),(89,144),(90,145),(91,146),(92,147),(93,148),(94,149),(95,150),(96,151),(97,152),(98,153),(99,154),(100,155),(101,156),(102,105),(103,106),(104,107)], [(1,63),(2,64),(3,65),(4,66),(5,67),(6,68),(7,69),(8,70),(9,71),(10,72),(11,73),(12,74),(13,75),(14,76),(15,77),(16,78),(17,79),(18,80),(19,81),(20,82),(21,83),(22,84),(23,85),(24,86),(25,87),(26,88),(27,89),(28,90),(29,91),(30,92),(31,93),(32,94),(33,95),(34,96),(35,97),(36,98),(37,99),(38,100),(39,101),(40,102),(41,103),(42,104),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(51,61),(52,62),(105,174),(106,175),(107,176),(108,177),(109,178),(110,179),(111,180),(112,181),(113,182),(114,183),(115,184),(116,185),(117,186),(118,187),(119,188),(120,189),(121,190),(122,191),(123,192),(124,193),(125,194),(126,195),(127,196),(128,197),(129,198),(130,199),(131,200),(132,201),(133,202),(134,203),(135,204),(136,205),(137,206),(138,207),(139,208),(140,157),(141,158),(142,159),(143,160),(144,161),(145,162),(146,163),(147,164),(148,165),(149,166),(150,167),(151,168),(152,169),(153,170),(154,171),(155,172),(156,173)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208)]])

C22×C52 is a maximal subgroup of   C52.55D4  C26.10C42  C52.48D4  C23.21D26  C23.23D26  C527D4

208 conjugacy classes

class 1 2A···2G4A···4H13A···13L26A···26CF52A···52CR
order12···24···413···1326···2652···52
size11···11···11···11···11···1

208 irreducible representations

dim11111111
type+++
imageC1C2C2C4C13C26C26C52
kernelC22×C52C2×C52C22×C26C2×C26C22×C4C2×C4C23C22
# reps161812721296

Matrix representation of C22×C52 in GL3(𝔽53) generated by

5200
0520
0052
,
100
0520
001
,
1300
0180
0034
G:=sub<GL(3,GF(53))| [52,0,0,0,52,0,0,0,52],[1,0,0,0,52,0,0,0,1],[13,0,0,0,18,0,0,0,34] >;

C22×C52 in GAP, Magma, Sage, TeX

C_2^2\times C_{52}
% in TeX

G:=Group("C2^2xC52");
// GroupNames label

G:=SmallGroup(208,45);
// by ID

G=gap.SmallGroup(208,45);
# by ID

G:=PCGroup([5,-2,-2,-2,-13,-2,520]);
// Polycyclic

G:=Group<a,b,c|a^2=b^2=c^52=1,a*b=b*a,a*c=c*a,b*c=c*b>;
// generators/relations

׿
×
𝔽